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RADIO FREQUENCY LINAC DRIVEN FREE-ELECTRON
LASER CONFIGURATIONS

Introduction

Significant advances in radio frequency (RF) linac technology concerning the reduction

of emittance and increase in beam current have been taking place. Lower emittance allows

for a smaller electron beam radius and thus higher current densities and laser gain. Under

appropriate conditions, the radiation generated in a free electron laser (FEL) can be focused

and overcome the natural tendency to diffract (spread transversely). This optical guiding

phenomenon was first analyized in the low gain regime', and later in the exponential gain

2-7regime . Optical guiding in the FEL can enhance the gain and efficiency and is an

integral part of the configurations illustrated in this paper.

We have presented a formalism for describing the three-dimensional radiation field

in FELs called the source dependent expansion (SDE) method" 7 . In this approach, the

radiation field is decomposed into a sum of complete normal modes. Instead of using

the usual modal expansion consisting of vacuum Gaussiar T._-Ierre functions, the SDE

method incorporates the source function (driving current) s-- ,asistently into the func-

tionrl dependence of, i) the radiation waist, ii) the radiation wavefront curvature and iii)

the complex radiation amplitude. The SDE method significantly reduces the number of

modes that are required to model the radiation field and reduces the computational time

and cost of the simulations.

In our numerical examples the electron dynamics include: i) betatron oscillations, ii)

finite emittance and iii) energy spread. The FEL equations together with the SDE method

Manuscnpt approved July 24, 1989.



are implemented in the computer code SHERA. The code is applied to the analysis of high

extraction FELs driven by RF linacs. Two FEL configurations, which we considered,

are the i) master oscillator power amplifier (MOPA) and ii) single stage power amplifier

(SSPA). The schematic configurations are shown in Fig. 1. In both of those configurations,

optical guiding plays a central role.

The Formulation of 3-D FEL Equations

We will consider a realistic, linearly polarized wiggler expressed in terms of the vector

potential,

A.(x,y,z) = A.(xy,z)cos( kw(z')dz')., (1)

where A.(x, y, z) and k, (z) are slowly varying functions of z. The expressions for A.(x, y, z)

takes on different forms depending on the shape of the magnetic pole face.

The linearly polarized radiation field is

AR(r,0,z,t) = -A(r,O,z)exp[iw(z/c - t)]t: /2 + c.c., (2)

where A(rO, z) = JA(r, 0, z)jeiO r,9,z ) is the complex amplitude of the radiation field ex-

pressed in polar variables, w is the frequency, and c.c. denotes the complex conjugate.

The wave equation governing AR is

10 0 1 a2 j92 1 82) 41r
(! r + - - - +2 20" AR - J (3)

\r 'r iOr r 2 00 2  19z 2  C2 9Z2 /

where J. is the driving current density. The detailed representaion for the current is given

in Ref. 8. Using the SDE method -7 , the radiation field is represented in the form,

A(r,0,z)= CMP(Oz)DP (rz). (4a)
"m

where

lel CP(O,z) = am,p(z)cos(pO) 4 bm,p(z)sin(pO), (4b)

V2n'Oc2

D(P) ( P/LP( )exp[(1 -iQ(z)) /21 (4c)
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and

j DI( )[D( )]* rd = 6m,p. (4e)

The functional dependence of the spot size r, and curvature a are governed by the driving

current.

Multiplying both sides of Eq. (3) by exp[i(w(z/c - t)] and integrating over t, from 0

to 27r/w, then multiplying both sides by DP cos(pO) or DP sin(pO) and integrating over r,

from 0 to oo, yields the following SDE equations governing the radiation field,

I + .,, a[o.,,z)] [°- ,pZ
r a 1ar+amp(Z)

[ (+lm)B*(z) [mn,p(Z)
bm+,,(z) = Gmp(Z) '

where
Qmp()= + + i(2m+p+1L ± 2 ) _ r' , al

raS,. +-,p+ + 2 (6)

B(z) =-a - +- i - 2(7)
r , L O r 2  2 r  ,  w r .

Fm,p I1 ) aw(. ,y,z)[D e- cospOi\
Gm=p 1+ 6p,o \,/h sinp ' (8)

where . = (1/2)(w2) ( )(c/w)FWbb, "-'" on top of a quantity denotes the instantaneous

values of the variable of a given particle at the axial position z, * denotes the complex

conjugate and the prime denotes a derivative with respect to z, i.e., = 0/Os. In addition,

a, = (fel/v/2moc2 )A, is the normalized wiggler amplitude, FB = Jo(b)-JI(b) for a linearly

polarized wiggler, b = aw(O,O, z) 2 /2( 1 +a,(0, , z)2), 'b is the effective area associated with

the transverse electron beam profile, Wb = (4ireI2no/moc2 )1/2 is the plasma frequency of
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the electron beam on axis, bp,o 1 for p = 0, and bp,0 = 0, otherwise. The symbol ()

denotes the average

2 j dOJd oIdyo /do dpyo dpofo(o,o,YoPo,Po,Pzo)(...), (9)

and is the integral over all the various initial conditions at z = 0, where fo is the initial

electron beam distribution function and f0 is normalized such that < (1) >= 1. For

a parabolic trans,,erF- electron beam profile, Ob = 7r(r'/2), and , = v(c/w)FB, where
2 2

v-= Wbab/47rc -_ I(A)/17 x 10' is Budker's constant and rb is the edge radius of the

electron beam.

The radiation amplitude evolves as electrons move in the longitudinal ponderomotive

potential field formed by the beating of the wiggler field and the radiation field. The

electron's phase in the ponderomotive potential field is defined as 0', where

I,(z;V0o,Xo,yo,Po,P o, o) j 1 _ + k,(z') - dz' + + roo, (10)

V'0 is the initial phase in the ponderomotive potential well, (xo,yo) are the initial trans-

verse positions, (pzo,pyo) are the initial transverse momentum and Pzo is the initial axial

momentum.

At this point in the SDE analysis, the function H(z) is arbitrary. If H(z) is not

specified, the equations for am,p and bm,p in (5) are underdetermined, i.e., there are more

equations than unknowns. The SDE method provides a representation for r, and a that

yields analytical results and minimizes the numerical computation in a fully self-consistent

simulation. It is assumed that the radiation beam profile remains approximately Gaussian

with a nearly circular cross section. In this case we expect the magnitude of the coefficients,

am.,p(z) and b,,p(z) to become progressively smaller as m and p take on larger values.

Hence, if the lowest order mode a0 ,0 gives a rough approximation to the radiation field, we

may solve for aoo(z), r,(z) and a(z). We find

(9/Oz + Qo,o)aoo - -iFo,o, (ii)

and

B Fio/aoo. (12)
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Equation (12) above yields the following first order coupled differential equation for r,(z)

and a(z),
, c a r, F (13a)

r- 2 - (F1,0 )1 ,
w r, ao,0

c (1 +a 2 ) (2- r -2 a- [(FO)R - (FI1.0),, (13b)w "  a0 ,0

where ()R,j denotes the real and imaginary parts of the enclosed function. In the SDE

method, the function H(z) is specified by (13).

The particle motion in the z-direction is best written in terms of the equation for the

phase 0 and the total relativistic gamma,

- wE FaW (, , z)ja(, , z) Isin V, (14)

dz

and
d( - -kw(O) W / c (1 + zi( P'Z)1) + kw(z), (15)dz -i+

whereA/3 = v/c.

Description of the 3-D FEL Code SHERA

SHERA is a steady-state, single frequency code, which uses the SDE method to eval-

uate the radiation beam in the FEL. It incorporates realistic wiggler effects, such as trans-

verse gradient and wiggler noise. In the results presented here, the wiggler is assumed to

be free of field errors and it has weak focusing in both the x and y planes via parabolic

pole peices i.e.,

A.(x,y,z) = A.(z)cosh(k,,,x) cosh(k,,,yy), (16)

where k' + k - k' . For equal focusing in the x and y plane implies, k,.,,, = k,,y.

The wiggler field can be tapered by assigning a functional form for k",(z), au,(Z) or

resonant phase associated with a test particle. The resonant phase is defined as the phase

associated with the bottom of the ponderomotive potential well, 'R = constant. A test.

particle trapped at the resonant phase satisfies the following equation

d2 1LR - 2T)- sinR, (17)

dz
2  0 T(
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where
dk, w/cdaw

dz 292 dz'

and = ((1 + d2)/14 )(WIC) 2 FBa,,Waj is the synchrotron wave number, where "-" de-

notes the value associated with the test particle.

For simplicity, the electron distribution function is assumed to be separable in this

paper, i.e., f, = fp(/'o)f,(xo, yo,pro,pyo)fz(pZo). The initial transverse electron beam dis-

tribution is assumed to have a water bag distribution, i.e., the electron density is

/Rbrb, (18)
f 0 Rb > rb,

where R' = z + Y+ (v 0 + v20)/(ko(O)c) 2 is the radius in the emittance space, V is the

4-dimensional phase space volume and w = (Z, , z)kw/j is the betatron wave number

for a parabolic pole face with equal focusing in both the x and y planes. Integrated over

the transverse velocity, the electron beam has a parabolic density profile with the beam

density no on axis where -E is the beam edge radius.

The transverse motion of the electrons due to finite emittance in the realistic wiggler

can be expressed accurately by an analytical expression for ykw < < 1. The particle motion

is approximately,

I ko(z) [ cos$ + vs sin'J ' (19)

where j' = f k3(z')dz'.

In the following simulations, the electron beam is matched at the entrance of the

wiggler, i.e., the electron beam radius inside the wiggler is uniform if the wiggler parameters

are constant. The matching condition becomes

(X ,(O)f,) / 2

rb = , (20)

where A,, is the wavelength of the wiggler, E, is the normalized beam edge emittance,

ire,//3-y is the electron beam area in transverse phase space.

The beam current is modeled by discrete macro particles. To minimize the num-

ber of electrons in the simulation, the integrals over the initial conditions are performed
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by quadratures. Gaussian quidrature is used for the initial phase 'O and a 72 point

quadrature 0 is used for the 4-dimensional transverse emittance. The energy spread is

modeled by Gaussian, top-hat or any prescribed distribution functions, and implemented

by either evenly spaced grids, or Gaussian quadrature. For simulations in this paper, the

full interval of the Gaussian quadrature for the energy spread is 1.25 times the Gaussian

width.

RF Linac Driven Power Ampl'fiers

RF linacs have only been used as drivers for FEL oscillators due to low gain. Because of

significant continuous advances in reducing beam emittance and increasing beam current,

i.e., high beam brightness, RF linacs appear to be suitable to drive FEL amplifiers. With

the improvement in electron beam brightness, the high power FEL oscillator configuration

becomes less attractive, mainly because of the problem of mirror damage. In this paper

we present two configurations which can achieve high gain and high efficiency. These are

the master oscillator power amplifier (MOPA) and the single stage power amplifier (SSPA)

configurations.

I. Master Oscillator Power Amplifier (MOPA)

The MOPA concept, Fig. la, consists of trapping the electrons in the ponderomotive

potential well and tapering the wiggler from the entrance to the exit of the wiggler for

efficiency enhancement. To create a large ponderomotive potential well requires high power

input radiation from a master oscillator. The large input laser can be an FEL oscillator.

We will give an example of an RF linac that will produce 1 pn radiation in the MOPA

configuration with high efficiency and high power. The parameters of the wiggler, the

input radiation and the electron beam are given in Table 1.

The electron beam has an energy of 140 McV, a peak current of 500 A, an intrinsic

energy spread of 1.0% FWHM, a normalized edge emittance of c, = 0.008 cm - rod and a

beam brightness of/B = 1.3 x 1010 A/(m - rad) 2 . These parameters are not, too different

from the existing RF linac beam at Boeing Aerospace Company.

7



The amplitude of the vector potential of the wiggler is tapered for efficiency enhance-

ment, see Fig. 2. The taper is slow initially and becomes faster at the end of the wiggler.

If all the electrons are trapped, the maximum efficiency would be 15.8%.

The following simulation results are obtained with an injected radiation that is focused

at the entrance of the wiggler with a fiat wavefront. The efficiency and radiation guiding

can be further improved by moving the focal point, but will not be presented here.

For an input radiation power of 50 MW, focused to a spot size of 0.1 cm, the fractional

trapping potential is
/ a-'° 1/2

___roc 4 1 ) a / 1.6%. (21)
,yrnoc 1 + a2J

The estimate of the trapping protential has to be adjusted by the initial resonant phase.

which is sinV'R = 0.25. The actual trapping potential is sufficient for trapping an electron

beam with a 1.0% energy spread. Sii.ce the radiation grows rapidly, some of the electrons

not originally inside the separatrix can become recaptured.

In this illustration, an axially symmetric electron beam and radiation beam are as-

sumed. The wiggler has parabolic pole faces so that weak transverse focusing is the same

in both the x and y planes. A total of 10 Gaussian-Laguerre modes were used in the sim-

ulation. The differences in results using 10 Gaussian-Laguerre modes versus 6 Gaussian-

Laguerre modes is typically much less than 5%.

Figure 3 is a plot of the radiation spot size as a function of distance. In the absence

of optical guiding, the Rayleigh length would be 3 in, and at the end of the interaction

the radiation spot size would be 13 times larger than the initial spot size of 0.1 cm. As a

result of optical guiding, the final spot size is only 0.32 cm. The radiation is therefore able

to propagate through the vacuum chamber without significant loss, because the condition

g = 2.5 cm > 5, + 0.3 cm = 1.9 cm is satisfied, where g is minimum wiggler gap

Figure 4 is a plot of the radiation power in each mode as a function of axial distance.

The fundamental mode clearly dominates and the SDE method is extremely accurate for

evaluating the spot size and wave front curvature.

Figure 5 is a plot of the efficiency as a function of beam energy spread. For electron

beams with energy spread less than 1.0% Gaussian full width, the smaller input radiation

power gives a higher efficiency. This is a consequence of optical guiding. We have shown
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in Ref. 6 that perfectly guided radiation beams cannot be maintained in the high-gain

trapped-particle regime. However, the radiation is well-focused compared to free space

diffraction. The envelope equation for the radiation beam has the form' - 7

ris + K2 r = 0. (22)

The parameter governing radiation focusing is

K -1 + C2 < sine +2C < cos-/ > ±±r2 < sin >) (23)
\r.2/ 2c 4'

where C(z) = (2v/y)(1 - f)(1 + f)-(a/ao,o(z)J) is the coupling coefficient, f(z)

ab/a is the filling factor, and Cr = 7rr2 is the area of the radiation beam. The first

term on the right-hand side of (23) is defocusing and corresponds to the usual diffraction

expansion, the second and third terms are always focusing while the last term is usually a

defocusing contribution. For perfectly guided beams, K2 = 0. For weakly guided beams,

the focusing terms are reduced. The coupling coefficient C is larger when the initial input

is smaller. Thus, tne radiation focuses better when the input power is smaller. Figure 6

is a comparison of radiation spot sizes as a function of z for the input radiations of (-)

50 MW and (--) 500MW obtained for simulations with no energy spread. The spot size

associated with 50 MW input is smaller and the final efficiency is larger.

II. Single Stage Power Amplifier (SSPA)

A somewhat simpler configuration, that can achieve high power and high efficiency,

is the single stage power amplifier (SSPA) 12 . In the SSPA configuration (see Fig. 1b), a

low power laser, such as a dye laser, is directly amplified and optically guided in a uniform

wiggler region until saturation occurs. The intrinsic efficiency in the uniform wiggler

region is small, typically less than 2%. For efficiency enhancement, the wiggler is spatially

tapered just prior to saturation. At this point the electron beam is tightly bunched in

the ponderomotive wave. and the trapping potential can be sufficiently large. The SSPA

configuration requires a slightly longer overall wiggler length. The main advantage of the

SSPA configuration is the elimination of the high power master oscillator.
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The parameters of the wiggler, the input radiation and the electron beam for the 1 pm

SSPA configuration are given in Table II. The electron beam has an energy of 250 MCV,

a peak current of 1 kA, an intrinsic energy spread of 1.0% FWHM, a normalized edge

emittance of E, = 0.007 cm rad and thus, a beam brightness B = 5 x 10"A/(m - rad)2 .

The following simulation results are obtained with an injected radiation beam power

of 15 k4 peak, focused at the entrance of the wiggler to a spot size of 0.11 cm. The free

space Rayleigh length is 4 m. At exact resonance, the radiation saturates at a distance of

15 m with an intrinsic efficiency of 0.39%. At the end of the uniform wiggler region, the

trapping potential is

lelkkt., = 4 a aoo 1/ = 3.2
ymnc 2  1+ a 2

In the uniform wiggler section, the radiation beam is optically guided and the magnetic

field amplitude and period are 3.155 kG and 9.6 cm, respectively. The wiggler taper begins

just prior to the saturation point (z = 15 in). Figure 7 shows the taper of the amplitude of

the vector potential of the wiggler. If all the electrons are trapped, the maximum efficiency

would be 27%. A plot of the efficiency as a function of the axial distance is shown in Fig.

8. The maximum efficiency is 22% at the end of the wiggler and a substantial fraction

of the beam electrons are trapped in the ponderomotive buckets. Figure 9 indicates that

the wiggler can be tapered further to obtain even higher efficiencies. The spot size of the

radiation field is plotted in Fig. 9. The spot size at the end of the wiggler is 0.24 cm.

Conclusions

With the recent advances in RF linac technology towards higher power and higher

brightness, FEL configurations driven by RF linacs are no longer limited to oscillators.

We have presented exar ,--s of the MOPA and SSPA configurations for achieving high

FEL power and efficier, ,. . he SSPA is the simpler of the two configurations because the

hign power master oscillai.(,- ,, eplaced with a low power conventional laser source.
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Table I

Parameters of Numerical Simulation in the MOPA Configuration

Electron Beam (parabolic density profile)

Energy, E 140 MeV

Current, 1 500 A

Intrinsic E-spread, AE/E 1.0% (Gaussian full width)

Slippage distance 0.08 cm

Norm. edge emittance, e,, 0.008 cm-rad

Radius, rb 0.08 cm

Energy spread due to c,,

__ I , 1 0.17%

Wiggler (linearly polarized)

Period, A,, 5.0 cm

Init. magnetic field, B, 4.28 kG

Final magnetic field, B, 3.21 kG

Wiggler length, L, 40 m

Initial normalized vector potential, aw V2

Taper (amplitude) non-uniform (max 15.8%)

Radiation

Wavelength, A 1 Am

Input power, .Pin 50 MW

Min. spot size of input rad. 0.1 cm (at z = 0 m)

Initial Rayleigh length 3.0 ni

Final spot size, r, (z=40 m) 0.32 cm

Output pover, P.t (peak) 5.2 GW

Efficiency at end of viggler 7.5%
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Table II

Parameters of Numerical Simulation in the Power Amplifier Configuration

Electron Beam (parabolic density profile)

Energy, E 250 MeV

Current, 1 1000 A

Intrinsic E-spread, AE/E 1.0% (Gaussian full width)

Slippage distance 0.08 cm

Norm. edge emittance, c, 0.007 cm-rad

Radius, rb 0.087 cm

Energy spread due to c,

= 1 0.06%
-t, 2 Vb a,

Wiggler (linearly polarized)

Period, A, 9.6 cm

Init. magnetic field, B, 3.155 kG

Final magnetic field, Bw, 2.05 kG

Wiggler length, Lw 80 m

Initial normalized vector potential, a, 2.0

Taper (amplitude) non-uniform (max 27%)

Radiation

Wavelength, A 1 jtm

Input power, P 15 kW

Min. spot size of input rad. 0.11 cm (at z = 0 m)

Initial Rayleigh length 4.0 m

Final spot size, r, (z=80 m) 0.23 cm

Output power, Pout (peak) 53 GW

Efficiency at end of wiggler 22%
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of (-) 50 MW and (--) 500 MW.
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Fig. 6. Plots of spot sizes as a function of axial distance for an electron beam with

no initial energy spread for input radiation power of (-) 50 MW and (--) 500 MW.
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Fig. 7. Plot of the amplitude of the normalized vector potential of the wiggler as a

function of interaction distance z.

20



I SPOT SIZE OF FREE SPACE
o ---- GAUSSIAN RADIATION

-0.2- I

0
I--

O /
/ NUMERICAL RESULT

m 0.1-.

U.
0
W rb
Nb

F-

C,, 0 I I

0 20 40 60 80
AXIAL DISTANCE, z(m)

Fig. 8. Plot of the radiation spot size as a function of distance z for 1.0% Gaussian

full width energy spread.
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Fig. 9. Plot of efficiency as a function of the axial distance z.
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